Clone
1
DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Elma Moyes edited this page 2025-02-07 04:53:50 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion specifications to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses reinforcement discovering to improve reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key identifying feature is its support learning (RL) step, which was used to improve the design's responses beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately improving both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, meaning it's geared up to break down complicated inquiries and reason through them in a detailed manner. This guided reasoning process allows the design to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation design that can be integrated into different workflows such as representatives, rational reasoning and information interpretation jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion parameters, allowing by routing inquiries to the most appropriate professional "clusters." This approach allows the design to concentrate on different issue domains while maintaining general performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient designs to imitate the behavior and reasoning patterns of the bigger DeepSeek-R1 model, using it as an instructor model.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and evaluate designs against essential safety requirements. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop numerous guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, create a limitation boost request and reach out to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For directions, see Establish approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging content, and evaluate models against essential safety requirements. You can carry out security measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and wiki.snooze-hotelsoftware.de design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it-viking.ch it's sent to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the final outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and it-viking.ch whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.

The design detail page provides important details about the design's capabilities, prices structure, and execution guidelines. You can discover detailed usage instructions, including sample API calls and code snippets for combination. The design supports different text generation tasks, consisting of content production, code generation, and concern answering, utilizing its support learning optimization and CoT reasoning abilities. The page likewise includes release options and licensing details to assist you get started with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, select Deploy.

You will be prompted to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, get in a number of instances (in between 1-100). 6. For example type, select your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service function permissions, and file encryption settings. For most use cases, the default settings will work well. However, for production releases, you might wish to evaluate these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to start using the design.

When the implementation is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can try out various triggers and adjust model specifications like temperature level and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal outcomes. For instance, content for reasoning.

This is an excellent way to check out the model's reasoning and text generation capabilities before integrating it into your applications. The play ground offers immediate feedback, assisting you comprehend how the design reacts to different inputs and letting you tweak your prompts for optimum results.

You can rapidly check the model in the play ground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out inference utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up reasoning specifications, and sends out a request to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient techniques: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you choose the method that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model browser displays available designs, with details like the company name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card reveals crucial details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if applicable), indicating that this model can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to view the model details page.

    The design details page includes the following details:

    - The model name and provider details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the design, it's suggested to examine the model details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the immediately produced name or produce a customized one.
  1. For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the variety of instances (default: 1). Selecting proper circumstances types and counts is vital for cost and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the design.

    The deployment process can take several minutes to finish.

    When release is total, your endpoint status will alter to InService. At this moment, the design is ready to accept inference requests through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the deployment is total, you can conjure up the model using a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the design utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
  5. In the Managed deployments section, locate the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and links.gtanet.com.br Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and raovatonline.org SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop innovative solutions utilizing AWS services and accelerated compute. Currently, he is concentrated on establishing strategies for fine-tuning and optimizing the inference efficiency of large language models. In his free time, Vivek delights in hiking, enjoying films, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that help consumers accelerate their AI journey and unlock business value.